If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-120x-2700=0
a = 1; b = -120; c = -2700;
Δ = b2-4ac
Δ = -1202-4·1·(-2700)
Δ = 25200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25200}=\sqrt{3600*7}=\sqrt{3600}*\sqrt{7}=60\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-60\sqrt{7}}{2*1}=\frac{120-60\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+60\sqrt{7}}{2*1}=\frac{120+60\sqrt{7}}{2} $
| 5x-2x=-12-3x | | 11/16z+7/8z=5/16 | | A=1/2*3.14*r^2 | | 2/3x-1/6=1/2x+5-6 | | 27-5a/2=6 | | 128=12^2+240(t) | | 10m-(2/5)=9(3/5) | | 4x+x−3=0 | | 13-5x=2x-1 | | 4a^2+8a+12=0 | | -1/3(9x+42)-5x=70 | | 3(3x+5)=9x-8 | | x+12=-81 | | -3=2a+3-4a | | 9r+r-6=54 | | 2(2t+2)=4(t-15) | | 4k^2+40k+24=0 | | -0.7x+2.53=-0.5x+7.33 | | w+403=177 | | 0.16666d+0.66666=0.25(d-2) | | -2d+1=3 | | -1/3(9c+42)-5=70 | | -5+7x=-7x-5 | | 2x2+x−3=0 | | 1.8x=0.54 | | 0.16666666666666666666666666666666d+0.66666666666666666666666666666666=0.25(d-2) | | 4c+9=8c+1-(2c-11)/3 | | 2(x+10)-x=33 | | 7+3c=-3 | | 9c/10=9/5 | | 24-3r=6(-7+5r) | | -4n-3(2+6n)=-116 |